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Abstract. Data is spread across different organizations and must be combined to get valuable analytics or 

train machine learning models. Sensitive features such as identification numbers, as columns, are common in 

these data, and organizations can only link if they share these columns. However, data protection regulations 

prevent these organizations from revealing the values in these columns to others. This paper proposes a 

technique, PENDA (Privacy ENhanced Data Aggregator), to encrypt columns of a database table or 

spreadsheet so that a central aggregation server can join them without decrypting using XOR-based 

homomorphism. We implement our PENDA system and demonstrate how organizations taking part in the 

process can encrypt and merge data. The experimental results show that the system can handle very large 

data files and scale to multiple organizations. 
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1. Introduction 

Spreadsheets and relational databases make up most of the storage and processing of today's data. A 

spreadsheet is a file of cells in columns and rows, and it helps in sorting, arranging, and calculating data. A 

database collects information organized in a specific structure to quickly read, edit, add, or delete data. Codd 

[1] proposed the relational database model, tables with rows and columns representing items and their 

attributes.  A special-purpose declarative language called structured query language (SQL) is used to query 

the relational database. 

The inception of cloud computing permits anyone to outsource storage and computation on large 

quantities of data to third-party servers. However, consumers usually do not trust cloud service providers 

with confidential data [2]. This situation leads to privacy concerns, and threats from hostile insiders and 

external attackers fortify this lack of trust. They do not wish to endow third-party access to their private data, 

preventing database applications and spreadsheets from using cloud storage solutions. However, on-premise 

solutions are usually inconvenient than these large-scale ones and are also more susceptible to attacks. This 

situation demands a cryptographic solution that lets data on the cloud be end-to-end encrypted to make sure 

the server never reads the private plaintext data. However, this strategy causes a challenge when the server 

performs relational database operations on the data. 

In distributed relational databases, data is stored across multiple sites, and some parts of this data are 

very private for its owners. This data distribution is a different scenario compared to a single centralized 

database server. Therefore, a natural cryptographic problem arises in this setting: how to generate helpful 

information while keeping all participating sites' data confidential? The most effective procedure still 

missing is a join operation based on secret-shared key columns. This operation can be used, e.g., to combine 

customer data from different organizations into a single dataset, as shown in Figure 1. The organization in 

the figure can be public and private sectors such as the tax department and a private bank. 

Proposals to solve this problem include general-purpose primitives like fully homomorphic encryption 

(FHE) [3], functional encryption (FE) [4] and oblivious RAM (ORAM) [5]. FHE allows an untrusted server 

to receive encrypted data        and perform any function   on it. It computes the encrypted result 

         , and      is only obtained by decrypting the result. FE allows a trusted authority holding a 

master secret key to generate a special functional secret key associated with a function  . The FE operation 
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on        with this key gives      without revealing anything about  . ORAM algorithms let a user hide 

its access pattern to the remote untrusted storage by shuffling and encrypting data again as they are accessed. 

Even though these techniques achieve such an "ideal" notion of privacy, they are unsuitable for real-life 

implementation due to significant performance and communication overheads. The problem of searching on 

encrypted data was introduced by Song et al. [6], where they presented a searchable symmetric key 

encryption scheme. This scheme allows a user to test if a ciphertext block contains a word, given a trapdoor 

for that word. We use a similar trapdoor approach to merge the tables. 

The main contribution of this paper is to develop a mechanism where an organization can share private 

data required to combine data from other organizations. The proposed system handles database tables and 

spreadsheets consisting of millions of records, and it is also able to scale to merge data from multiple 

organizations.  

The remainder of the paper is organized as follows. In section 2,  there is a brief overview of related 

work and preliminary. The explanation of the proposed system and methodology are provided in section 3. 

Section 4 presents the system setup and experimental results with evaluation metrics. Finally, we conclude 

with a summary of our main contributions and results. 

 
Fig. 1: Overall design of the proposed system 

2. Preliminary 

In this section, we will briefly review the searchable encryption scheme. We also go through the XOR 

homomorphism property, which we combine with searchable encryption in our system. 

2.1. Searchable Encryption 

The encrypted search was first considered explicitly by Song et al. in [6], which presented the concept of 

searchable symmetric encryption. A particular two-layered encryption construct is composed for all the 

words in the document.  The queried keyword is converted to a trapdoor and searched by stripping its outer 

layer and checking whether the inner layer is of a specific format. The query returns only the document that 

finds a match and works when there is a low-bandwidth network connection between the client and the 

server. 

Let us consider a scenario where Bob has a server where Alice wants to store her documents. However, 

she does not trust Bob. This situation could be an untrusted mail server where Alice, a mobile user, wants to 

keep her email messages. Therefore, Alice encrypts her documents with the searchable symmetric encryption 

scheme and only stores the ciphertext in the server. The documents' words can be considered tokens, such as 

a 64-bit block, and we pad the shorter words and split the longer words to obtain tokens of the same length. 

To be more precise, Alice wants to encrypt a document containing a sequence of   bit words, 
        . Instead of applying the process to plaintext           , she encrypts   ’s as individual 
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blocks           . For each word   , she generates     bit length string    using a stream cipher. After 

that, Alice split    into          where    are     bits (the same length as   ) and    is   bits. Alice then 

uses a secret key   and a function   to create   s, i.e.,          . The trapdoor    is created by 

concatenating    and     
      i.e.,              

     where   is a keyed function. The final ciphertext    is 

created by XOR operation of     with   , i.e.,              . To search for   , Alice gives the server        . 

The server computes            for each   and checks if    is the form           
     to see any match. 

2.2. XOR Homomorphism 

A function   has XOR homomorphism property if on inputs    and   ,                     . 

These functions preserve the structure of the XOR operation from the input to the output set. Examples of 

XOR homomorphism include bit-based circular shifts and permutations. If we apply  -bit left circular shifts 

on two strings and then XOR them, the result will be equal to the  -bit circular shift on the XOR of the 

original strings. 

Secure permutation such as Fischer Yates shuffle generate uniformly distributed cycles of length   and 

has      runtime. Since all permutation has the XOR homomorphism property, these algorithms benefit 

secure search algorithms. 

3. Our Approach 

Encryption scheme such as Advanced Encryption Standard  (AES) provides strong security against data 

theft but no other functionality. There is a considerable trade-off between privacy/security and utility. Hence, 

a variety of functionality-enhanced encryption is proposed, such as searchable encryption, order-

preserving/revealing encryption, homomorphic encryption, and functional encryption. This section explains 

how we extend the searchable encryption for the secure merging of tables. 

3.1. Encryption 

Data stored in the cloud with traditional encryption does not allow searching. To search for data, we 

must download everything and decrypt it. Searchable encryption supports the creation of an encrypted 

database, where the data is tagged with encrypted keywords. The encrypted database can be uploaded to an 

external untrusted storage server and searched with encrypted queries. The server returns the data that is 

tagged by the encrypted query keyword. 

PENDA encryption scheme uses similar techniques to search encryption to encrypt sensitive columns. 

Encrypt element   in the column using a deterministic encryption algorithm such as AES using a key    to 

generate a 128-bit ciphertext. 

        
    

Generate a random 64-bit string,    and shuffle it using a secure permutation function   such as Fischer 

Yates shuffle into      . The shuffle generates the same permutation if the initial random number seed value 

is the same. Hence, the seed value is used as a key   . The final ciphertext is formed the by XOR operation 

of   and    concatenated with     
     as shown in Ren et al. [7] 

                             
      

This encryption, shown in Figure 2, is non-deterministic since the same plaintext can generate multiple 

ciphertexts depending on the random number    generated.  

3.2. Indexing 

Consider we have two ciphertexts   and    which we want to test if they are equal.  If they are equal, the 

deterministic AES encryption output   will be the same for both   and  . Then   and   will be of the 

following form 

                   

                   

where            and              

To check for equality, we first compute the XOR operation of   and  . 
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This will eliminate the common   component of the ciphertexts. Hence 

                                   

 

 

Fig. 2: PENDA encryption and unique tag creation 

Next, we compute the secure permutation using Fisher-Yates shuffle on the left half of the     and 

check if it is equal to the right half. If the   and   are equal, the secure permutation preserves the XOR 

structure due to the XOR homomorphism property as shown below. 

                                 

The merge operation will be costly if we perform the above equality test one pair at a time. It takes 

      comparison to combine two tables, and hence to compare   tables, it takes        comparisons. 

Relational databases can be joined efficiently, creating an index on the column it is joined. The joining 

column can be bucketed with hash to create a hash table index. We take a similar approach to create an index, 

but the column has different ciphertexts for the same plaintext value. Hence, we outline a method to create a 

unique tag that corresponds to the same plaintext as shown in Figure 2. 

We apply the secure permutation to the left half of the ciphertext. We then apply the XOR operation to 

the output of the permutation with the right half of the ciphertext. Since the permutation property preserves 

the XOR structure due to XOR homomorphism, the common permutation of the random string      gets 

eliminated. This produces the output            which corresponds uniquely to the plaintext. This 

unique tag can then be used to create the index for the merge operation. 

3.3. Merging 

After the index is created using the hash of the tag, the tables can be merged by looking up the tag of 

each row. The complexity of this operation depends on the data structure used for storing the index. If a 

hash-table is used, then each lookup takes      steps and hence the merging of two tables takes      

comparisons. 

4. System Evaluation  

4.1. Experimental Setup 

We implemented the encryption and merging using Python. The AES encryption is implemented using 

the PyCryptodome1 library. All the operations are scaled to use all the available threads in the CPU using the 

Dask [8] framework. We split the implementation into two software components: PDC (Privacy-Preserving 

Data Collector) and PDAgg (Privacy-Preserving Data Aggregator).  PDC does the PENDA encryption, and 

PDAgg does the PENDA indexing and merging. 

Each organization that wants to participate in the process encrypts its data using the PDC software. We 

assume that the AES key and the key for secure permutation are shared with the organizations using a secure 
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key distribution protocol. The PDA software is used to encrypt personally identifiable information such as 

ID numbers. Since the PENDA encryption is a non-deterministic scheme, the same ID number will produce 

different ciphertexts in different organizations, as shown in Figure 3. The AES key is shown in red, and the 

key for secure permutation is shown in yellow. 

Once all the encrypted files are securely transferred to the PDAgg, it first proceeds with index creation. 

The unique tag is generated for each row using the PENDA indexing algorithm, as shown in Figure 4. As 

before, we assume the key for secure permutation is shared with the PDAgg along with PDC using a secure 

key distribution protocol. Once the unique tag is generated, the index is created and merged, as shown in 

Figure 5. 

 
Fig. 3: Encrypting ID# column where different ciphertexts are produced for the same plaintext. 

4.2. Experimental Results 

In our first experiment, we simulated three organizations with one million records on a machine with an 

Intel Xeon Platinum 8170 processor running Debian Linux 11. The PDC and PDAgg were run utilizing all 

threads in the CPU. All the threads were profiled with Python yappi2 profiler, and the wall time recorded is 

shown in Table 1. 

 
Fig. 4: Generating the unique tag from ID# ciphertexts 

For the case of 5 million rows, the PDC could encrypt up to         rows per second. The PDAgg took 

      seconds to generate the unique tag for each file, and hence to merge the three files takes            

               seconds, assuming that the unique tag generation is done in sequence. We simulated up to 

10 organizations in our next experiment. In the first case, each organization had 500,000 records, and we 

repeated the experiment with one and two million records. The total aggregation time at PDAgg is shown in 

Figure 6. We assume that the unique tag generation is done in sequence. 

                                                           
2 https://github.com/sumerc/yappi 
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Fig. 5: The tables merged using the unique tag. 

These experiments show that the merging using the PENDA algorithm is faster than other techniques 

using FHE, FE or ORAM. A simple equality comparison on ciphertext encrypted with FHE [9] takes an 

order of seconds. 

Table 1: Time taken for each operation for three organizations 

Rows Encryption Time (PDC) Unique Tag 

Generation Time 

(PDAgg) 

Merging Time 

(PDAgg) 

100,000 1.98s 1.52s 0.60s 

500,000 3.69s 4.41s 3.16s 

1,000,000 6.24s 7.89s 6.59s 

2,000,000 10.65s 15.29s 36.76s 

5,000,000 25.20s 36.87s 95.75s 
 

 

Fig. 6: Execution time of PDAgg versus the number of organisations. 

5. Conclusion 

In this paper, we have proposed an efficient scheme PENDA  that encrypts columns of a database table 

or spreadsheet so that a central aggregation server can join them without decrypting using XOR-based 

homomorphism. Data is locked in siloes in different organizations due to privacy concerns, and it is a vast 

untapped resource for data mining. Using our proposed method, we merge data across these organizations 

without revealing personally identifiable information such as ID numbers. The algorithm was implemented 

and executed on files with millions of rows. It may be noted that the focus of this proposed encryption 
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scheme is only on the shared column on which it merges. Hence, an immediate extension of this work is to 

consider how to encrypt other unshared columns homomorphically to be used for computation without 

decrypting. 
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