

PENDA: Privacy ENhanced Data Aggregator

Jestine Paul
1,2

, Saravanan Rajamanickam

1
, Bharadwaj Veeravalli

2
 and Khin Mi Mi Aung

1

1 Institute for Infocomm Research, A*STAR, Singapore 138632
2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583

Abstract. Data is spread across different organizations and must be combined to get valuable analytics or

train machine learning models. Sensitive features such as identification numbers, as columns, are common in

these data, and organizations can only link if they share these columns. However, data protection regulations

prevent these organizations from revealing the values in these columns to others. This paper proposes a

technique, PENDA (Privacy ENhanced Data Aggregator), to encrypt columns of a database table or

spreadsheet so that a central aggregation server can join them without decrypting using XOR-based

homomorphism. We implement our PENDA system and demonstrate how organizations taking part in the

process can encrypt and merge data. The experimental results show that the system can handle very large

data files and scale to multiple organizations.

Keywords: encryption, cryptography, database

1. Introduction

Spreadsheets and relational databases make up most of the storage and processing of today's data. A

spreadsheet is a file of cells in columns and rows, and it helps in sorting, arranging, and calculating data. A

database collects information organized in a specific structure to quickly read, edit, add, or delete data. Codd

[1] proposed the relational database model, tables with rows and columns representing items and their

attributes. A special-purpose declarative language called structured query language (SQL) is used to query

the relational database.

The inception of cloud computing permits anyone to outsource storage and computation on large

quantities of data to third-party servers. However, consumers usually do not trust cloud service providers

with confidential data [2]. This situation leads to privacy concerns, and threats from hostile insiders and

external attackers fortify this lack of trust. They do not wish to endow third-party access to their private data,

preventing database applications and spreadsheets from using cloud storage solutions. However, on-premise

solutions are usually inconvenient than these large-scale ones and are also more susceptible to attacks. This

situation demands a cryptographic solution that lets data on the cloud be end-to-end encrypted to make sure

the server never reads the private plaintext data. However, this strategy causes a challenge when the server

performs relational database operations on the data.

In distributed relational databases, data is stored across multiple sites, and some parts of this data are

very private for its owners. This data distribution is a different scenario compared to a single centralized

database server. Therefore, a natural cryptographic problem arises in this setting: how to generate helpful

information while keeping all participating sites' data confidential? The most effective procedure still

missing is a join operation based on secret-shared key columns. This operation can be used, e.g., to combine

customer data from different organizations into a single dataset, as shown in Figure 1. The organization in

the figure can be public and private sectors such as the tax department and a private bank.

Proposals to solve this problem include general-purpose primitives like fully homomorphic encryption

(FHE) [3], functional encryption (FE) [4] and oblivious RAM (ORAM) [5]. FHE allows an untrusted server

to receive encrypted data and perform any function on it. It computes the encrypted result

 , and is only obtained by decrypting the result. FE allows a trusted authority holding a

master secret key to generate a special functional secret key associated with a function . The FE operation

 Corresponding author.

 E-mail address: jestine_paul@i2r.a-star.edu.sg

60

ISBN: 978-981-18-3959-7

2022 the 12th International Workshop on Computer Science and Engineering (WCSE 2022)

doi: 10.18178/wcse.2022.06.010

on with this key gives without revealing anything about . ORAM algorithms let a user hide

its access pattern to the remote untrusted storage by shuffling and encrypting data again as they are accessed.

Even though these techniques achieve such an "ideal" notion of privacy, they are unsuitable for real-life

implementation due to significant performance and communication overheads. The problem of searching on

encrypted data was introduced by Song et al. [6], where they presented a searchable symmetric key

encryption scheme. This scheme allows a user to test if a ciphertext block contains a word, given a trapdoor

for that word. We use a similar trapdoor approach to merge the tables.

The main contribution of this paper is to develop a mechanism where an organization can share private

data required to combine data from other organizations. The proposed system handles database tables and

spreadsheets consisting of millions of records, and it is also able to scale to merge data from multiple

organizations.

The remainder of the paper is organized as follows. In section 2, there is a brief overview of related

work and preliminary. The explanation of the proposed system and methodology are provided in section 3.

Section 4 presents the system setup and experimental results with evaluation metrics. Finally, we conclude

with a summary of our main contributions and results.

Fig. 1: Overall design of the proposed system

2. Preliminary

In this section, we will briefly review the searchable encryption scheme. We also go through the XOR

homomorphism property, which we combine with searchable encryption in our system.

2.1. Searchable Encryption

The encrypted search was first considered explicitly by Song et al. in [6], which presented the concept of

searchable symmetric encryption. A particular two-layered encryption construct is composed for all the

words in the document. The queried keyword is converted to a trapdoor and searched by stripping its outer

layer and checking whether the inner layer is of a specific format. The query returns only the document that

finds a match and works when there is a low-bandwidth network connection between the client and the

server.

Let us consider a scenario where Bob has a server where Alice wants to store her documents. However,

she does not trust Bob. This situation could be an untrusted mail server where Alice, a mobile user, wants to

keep her email messages. Therefore, Alice encrypts her documents with the searchable symmetric encryption

scheme and only stores the ciphertext in the server. The documents' words can be considered tokens, such as

a 64-bit block, and we pad the shorter words and split the longer words to obtain tokens of the same length.

To be more precise, Alice wants to encrypt a document containing a sequence of bit words,
 . Instead of applying the process to plaintext , she encrypts ’s as individual

61

blocks . For each word , she generates bit length string using a stream cipher. After

that, Alice split into where are bits (the same length as) and is bits. Alice then

uses a secret key and a function to create s, i.e., . The trapdoor is created by

concatenating and
 i.e.,

 where is a keyed function. The final ciphertext is

created by XOR operation of with , i.e., . To search for , Alice gives the server .

The server computes for each and checks if is the form
 to see any match.

2.2. XOR Homomorphism

A function has XOR homomorphism property if on inputs and , .

These functions preserve the structure of the XOR operation from the input to the output set. Examples of

XOR homomorphism include bit-based circular shifts and permutations. If we apply -bit left circular shifts

on two strings and then XOR them, the result will be equal to the -bit circular shift on the XOR of the

original strings.

Secure permutation such as Fischer Yates shuffle generate uniformly distributed cycles of length and

has runtime. Since all permutation has the XOR homomorphism property, these algorithms benefit

secure search algorithms.

3. Our Approach

Encryption scheme such as Advanced Encryption Standard (AES) provides strong security against data

theft but no other functionality. There is a considerable trade-off between privacy/security and utility. Hence,

a variety of functionality-enhanced encryption is proposed, such as searchable encryption, order-

preserving/revealing encryption, homomorphic encryption, and functional encryption. This section explains

how we extend the searchable encryption for the secure merging of tables.

3.1. Encryption

Data stored in the cloud with traditional encryption does not allow searching. To search for data, we

must download everything and decrypt it. Searchable encryption supports the creation of an encrypted

database, where the data is tagged with encrypted keywords. The encrypted database can be uploaded to an

external untrusted storage server and searched with encrypted queries. The server returns the data that is

tagged by the encrypted query keyword.

PENDA encryption scheme uses similar techniques to search encryption to encrypt sensitive columns.

Encrypt element in the column using a deterministic encryption algorithm such as AES using a key to

generate a 128-bit ciphertext.

Generate a random 64-bit string, and shuffle it using a secure permutation function such as Fischer

Yates shuffle into . The shuffle generates the same permutation if the initial random number seed value

is the same. Hence, the seed value is used as a key . The final ciphertext is formed the by XOR operation

of and concatenated with
 as shown in Ren et al. [7]

This encryption, shown in Figure 2, is non-deterministic since the same plaintext can generate multiple

ciphertexts depending on the random number generated.

3.2. Indexing

Consider we have two ciphertexts and which we want to test if they are equal. If they are equal, the

deterministic AES encryption output will be the same for both and . Then and will be of the

following form

where and

To check for equality, we first compute the XOR operation of and .

62

This will eliminate the common component of the ciphertexts. Hence

Fig. 2: PENDA encryption and unique tag creation

Next, we compute the secure permutation using Fisher-Yates shuffle on the left half of the and

check if it is equal to the right half. If the and are equal, the secure permutation preserves the XOR

structure due to the XOR homomorphism property as shown below.

The merge operation will be costly if we perform the above equality test one pair at a time. It takes

 comparison to combine two tables, and hence to compare tables, it takes comparisons.

Relational databases can be joined efficiently, creating an index on the column it is joined. The joining

column can be bucketed with hash to create a hash table index. We take a similar approach to create an index,

but the column has different ciphertexts for the same plaintext value. Hence, we outline a method to create a

unique tag that corresponds to the same plaintext as shown in Figure 2.

We apply the secure permutation to the left half of the ciphertext. We then apply the XOR operation to

the output of the permutation with the right half of the ciphertext. Since the permutation property preserves

the XOR structure due to XOR homomorphism, the common permutation of the random string gets

eliminated. This produces the output which corresponds uniquely to the plaintext. This

unique tag can then be used to create the index for the merge operation.

3.3. Merging

After the index is created using the hash of the tag, the tables can be merged by looking up the tag of

each row. The complexity of this operation depends on the data structure used for storing the index. If a

hash-table is used, then each lookup takes steps and hence the merging of two tables takes

comparisons.

4. System Evaluation

4.1. Experimental Setup

We implemented the encryption and merging using Python. The AES encryption is implemented using

the PyCryptodome1 library. All the operations are scaled to use all the available threads in the CPU using the

Dask [8] framework. We split the implementation into two software components: PDC (Privacy-Preserving

Data Collector) and PDAgg (Privacy-Preserving Data Aggregator). PDC does the PENDA encryption, and

PDAgg does the PENDA indexing and merging.

Each organization that wants to participate in the process encrypts its data using the PDC software. We

assume that the AES key and the key for secure permutation are shared with the organizations using a secure

1 https://www.pycryptodome.org/

63

key distribution protocol. The PDA software is used to encrypt personally identifiable information such as

ID numbers. Since the PENDA encryption is a non-deterministic scheme, the same ID number will produce

different ciphertexts in different organizations, as shown in Figure 3. The AES key is shown in red, and the

key for secure permutation is shown in yellow.

Once all the encrypted files are securely transferred to the PDAgg, it first proceeds with index creation.

The unique tag is generated for each row using the PENDA indexing algorithm, as shown in Figure 4. As

before, we assume the key for secure permutation is shared with the PDAgg along with PDC using a secure

key distribution protocol. Once the unique tag is generated, the index is created and merged, as shown in

Figure 5.

Fig. 3: Encrypting ID# column where different ciphertexts are produced for the same plaintext.

4.2. Experimental Results

In our first experiment, we simulated three organizations with one million records on a machine with an

Intel Xeon Platinum 8170 processor running Debian Linux 11. The PDC and PDAgg were run utilizing all

threads in the CPU. All the threads were profiled with Python yappi2 profiler, and the wall time recorded is

shown in Table 1.

Fig. 4: Generating the unique tag from ID# ciphertexts

For the case of 5 million rows, the PDC could encrypt up to rows per second. The PDAgg took

 seconds to generate the unique tag for each file, and hence to merge the three files takes

 seconds, assuming that the unique tag generation is done in sequence. We simulated up to

10 organizations in our next experiment. In the first case, each organization had 500,000 records, and we

repeated the experiment with one and two million records. The total aggregation time at PDAgg is shown in

Figure 6. We assume that the unique tag generation is done in sequence.

2 https://github.com/sumerc/yappi

64

Fig. 5: The tables merged using the unique tag.

These experiments show that the merging using the PENDA algorithm is faster than other techniques

using FHE, FE or ORAM. A simple equality comparison on ciphertext encrypted with FHE [9] takes an

order of seconds.

Table 1: Time taken for each operation for three organizations

Rows Encryption Time (PDC) Unique Tag

Generation Time

(PDAgg)

Merging Time

(PDAgg)

100,000 1.98s 1.52s 0.60s

500,000 3.69s 4.41s 3.16s

1,000,000 6.24s 7.89s 6.59s

2,000,000 10.65s 15.29s 36.76s

5,000,000 25.20s 36.87s 95.75s

Fig. 6: Execution time of PDAgg versus the number of organisations.

5. Conclusion

In this paper, we have proposed an efficient scheme PENDA that encrypts columns of a database table

or spreadsheet so that a central aggregation server can join them without decrypting using XOR-based

homomorphism. Data is locked in siloes in different organizations due to privacy concerns, and it is a vast

untapped resource for data mining. Using our proposed method, we merge data across these organizations

without revealing personally identifiable information such as ID numbers. The algorithm was implemented

and executed on files with millions of rows. It may be noted that the focus of this proposed encryption

65

scheme is only on the shared column on which it merges. Hence, an immediate extension of this work is to

consider how to encrypt other unshared columns homomorphically to be used for computation without

decrypting.

6. Acknowledgment

This research is supported by Institute for Infocomm Research, A*STAR Research Entities under its

RIE2020 Advanced Manufacturing and Engineering (AME) Programmatic Programme (Award

A19E3b0099).

7. References

[1] Codd, E. (1983). A Relational Model of Data for Large Shared Data Banks. Commun. ACM, 26(1), 64–69.

[2] Chu, C.K., Zhu, W.T., Han, J., Liu, J., Xu, J., & Zhou, J. (2013). Security Concerns in Popular Cloud Storage

Services. IEEE Pervasive Computing, 12(4), 50-57.

[3] Gentry, C. (2009). Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings of the Forty-First Annual

ACM Symposium on Theory of Computing (pp. 169–178). Association for Computing Machinery.

[4] Boneh, D., Sahai, A., & Waters, B. (2012). Functional Encryption: A New Vision for Public-Key Cryptography.

Commun. ACM, 55(11), 56–64.

[5] Goldreich, O., & Ostrovsky, R. (1996). Software Protection and Simulation on Oblivious RAMs. J. ACM, 43(3),

431–473.

[6] Song, D., Wagner, D., & Perrig, A. (2000). Practical techniques for searches on encrypted data. In Proceeding

2000 IEEE symposium on security and privacy. S&P 2000 (pp. 44–55).

[7] Ren, S., Tan, B., Sundaram, S., Wang, T., Ng, Y., Chang, V., & Aung, K. (2016). Secure searching on cloud

storage enhanced by homomorphic indexing. Future Generation Computer Systems, 65, 102–110.

[8] Rocklin, M. (2015). Dask: Parallel computation with blocked algorithms and task scheduling. In Proceedings of the

14th python in science conference.

[9] Kim, M., Lee, H., Ling, S., Ren, S., Tan, B., & Wang, H. (2019). Search Condition-Hiding Query Evaluation on

Encrypted Databases. IEEE Access, 7, 161283-161295.

66

